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Abstract In the present paper we propose the way of passage from quantum theory of con-
tinuous measurements based on the Lindblad equation to its “classical” analog. The last
one describes the influence of continuous measurement on the behavior of macroscopical
Markov system. Such theory can be represented in the form of the Fokker-Planck equa-
tion for the distribution function of measured system. The diffusion tensor of this equation
is uniquely determined by a type of the measured quantity. As the example of using of
the approach proposed we describe the stationary states of linear dissipative systems in-
duced by measurements in them. We consider possible qualitative effects connected with
measurements also. In particular we demonstrate on the simple example, how in the macro-
scopic system, consisting of noninteracting parts, measurement of global integral of motion
results in relaxation to the quasi-thermodynamic equilibrium between parts of the system.
The “temperature” of such state is determined by the total energy of the system and by mean
value of measured quantity.

Keywords Measurement · Markov system · Quantum-classical correspondence

PACS 03.65.Ta · 05.40.-a

1 Introduction

It is well known that the role of measurement in quantum mechanics is much broader than
in the classical physics, where it’s role only passive and consists in obtaining by an experi-
menter the necessary information about the observed system. It is essential to emphasize that
all information about the macroscopic system may be obtained without disturbance of it’s
state by the measuring device(meter). Conversely in the quantum mechanics according to
the uncertainty principle it is impossible to eliminate back reaction of the meter on the state
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of measured system. Nevertheless using the quantum theory of continuous measurements
(see the review [1] and references in it), it is possible not only to calculate the influence of
measurement on a state of a system but also to use this influence for state monitoring. On the
other hand since there is no impenetrable border between classical and quantum world, the
natural question emerges: whether it is possible on the basis of classical concepts to evalu-
ate the influence of a meter on a state of measured macro- or mesoscopical system whatever
small this influence would be? The main goal of our paper is exactly to propose the feasi-
ble approach to answer this question. The paper is organized as follows. In the Sect. 2 the
simplest (minimal) quantum model of continuous measurement process is considered. We
present that in the limit � → 0 this model may be formulated using Fokker-Planck equa-
tion for distribution function of corresponding classical system. The diffusion tensor of this
equation is uniquely determined by measured physical quantity. In the Sect. 3 the stationary
states of linear classical systems induced by the measuring process in them are consid-
ered. We demonstrate that in this situation the “thermodynamics” of measuring process may
be developed. This one has some features which make it different from usual linear ther-
modynamics. In the Sect. 4 some qualitative effects caused by the influence of measuring
process on the evolution of macro- or mesoscopical system are considered. In particular, as
the example of such phenomenon the thermalization effect between noninteracting parts of
composite classic system is investigated. This effect is stimulated by measuring of the global
integral of motion of the corresponding system.

2 Derivation of the Fokker-Planck Equation Describing the Measurement Process
for Macroscopical System

As one knows, the description of evolution of an open quantum system Q in Markov ap-
proximation is given by Lindblad equation for density matrix ρ̂ of this system [2]:

dρ̂

dt
= − i

�
[Ĥ , ρ̂] +

∑

i

([R̂i ρ̂, R̂
†
i ] + [R̂i, ρ̂R̂

†
i ]), (2.1)

where Ĥ = Ĥ † and R̂i , R̂
†
i are set of operators describing both internal dynamics of system

Q and its interaction with an environment.
On the other hand, the description of behavior of classical open system C effected by ad-

ditional stochastic forces (noise) can be obtained in Markov approximation in the framework
of the Fokker-Planck equation for its distribution function f (q, t) [3]:

df

dt
= − ∂

∂qi

(Kif ) + ∂2

∂qi∂qk

(Dikf ), (2.2)

where: q ≡ {qi}—set of the coordinates describing a state of a system C, Ki(q)—drift ve-
locity of C, determined by the equations of motion: dqi/dt = Ki(q), and Dik(q)—diffusion
tensor whose form is defined by the correlation tensor of stochastic forces field. Assume now
that quantum system Q has classical analog CQ. It looks very plausible that between these
two descriptions close connection may exist. Such connection should allow one starting
from a set of operators Ĥ , R̂i, R̂

†
i for Q, in the limit � → 0, to determine the expressions

for Ki(q) and Dik(q) of the classical system CQ by the regular procedure. The correspon-
dence between classical and quantum description for open Markov system was analyzed in
the paper of the author [4]. It has been shown, that in the first order on � Lindblad equation
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(2.1) for ρ can be reduced to the classical Liouville equation for f (q, t), i.e. actually to
(2.2) but without diffusive term. Meanwhile in [4] author did not take into account possi-
ble measurements performed under Q (because their effect in the first order on � is strictly
equal to zero). In the present paper we want to show that taking into account the influence
of measurements on CQ evolution results in the second order on � to the Fokker-Planck
equation for f (q, t) with diffusion tensor whose form is uniquely determined by measured
quantity. Let us demonstrate this statement at the example of the open system Q1 with one
degree of freedom whose evolution is prescribed by measurement of physical quantity (ob-
servable) O . According to the quantum mechanics, the hermitian operator Ô corresponds
to the observable O . The equation for evolution of density matrix ρ of system Q1 under the
continuous measurement of O is (see Ref. [1]):

dρ̂

dt
= γ

2
[Ôρ̂, Ô] + γ

2
[Ô, ρ̂Ô] = −γ

2
[Ô, [Ô, ρ̂]], (2.3)

where γ is coupling constant between the meter and the measured system. Note that in this
paper we restrict ourselves by investigating of the minimal measuring model describing only
the decoherence of measured system. As for the dissipation effects they must be investigated
in the framework of more general non-minimal disturbance model [5], but we can neglect
them for our purposes. The point is that the dissipation effects in the macroscopical system,
being the result of nonconservative forces acting on the system, may be precisely taken
into account in the equations of motion for the considered system. Therefore the dissipation
affects on the drift term in the Fokker-Planck equation for the distribution function only, but
not affects on the type of diffusion tensor which we are interested in here.

Following to the method of [4], we make passage to the limit � → 0. Under such passage
one must replace the density matrix ρ of Q1 by it’s classical counterpart—distribution func-
tion f (q,p, t) of system CQ1 , and commutators in the r.h.s. of (2.3) by Poisson brackets
according to the Dirac rule:

[Â, B̂] → i�{Â, B̂},
where

{Â, B̂} = ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

and A(q,p),B(q,p) are classical analogs of operators Â and B̂ . Calculating double com-
mutator according to this rule in the leading order on � we easily come to the desired equa-
tion for distribution function f (q,p, t) of CQ1 :

∂f

∂t
= γ �

2

2
{O{O,f }} = γ �

2

2

∂

∂xi

(
Dik

∂f

∂xk

)
, (2.4)

where diffusion tensor Dik is determined by the measured quantity O(q,p) (O(q,p) is the
classical counterpart of observable Ô) with the help of relation:

Dik(x) = εilεkm

∂O

∂xl

∂O

∂xm

. (2.5)

In expressions (2.4) and (2.5) we use notation: x1 = q , x2 = p and

εik =
(

0 1
−1 0

)
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is the antisymmetric tensor of the second rank (i, k = 1,2). Equation (2.4) can be easily
reduced to the standard form of the Fokker- Planck equation [3]:

∂f

∂t
= − ∂

∂xi

(Bif ) + γ �
2

2

∂2

∂xi∂xk

(Dikf ), (2.6)

where

Bi ≡ γ �
2

2

∂Dik

∂xk

is the drift of system CQ1 (caused by influence of measurement).
In view of importance of (2.4) and (2.5) for further considerations we bring the addi-

tional argument in behalf of these equations adequately describe the measurement process
influence on distribution function of classical system. With this purpose let us introduce
the quantity Õ(q,p) such that variables O(q,p) and Õ(q,p) are complemented to each
other. It means that their Poisson bracket {O, Õ} is equal to one. Equation (2.4) written in
variables O and Õ can be represented as:

∂f

∂t
= ∂

∂xi

(
Dik

∂f

∂xk

)
≡ ∂2

∂Õ2
f (O, Õ, t). (2.7)

To simplify the notation we use for a moment a system of units with γ �
2/2 = 1.

It is implied from (2.7) that the influence of measurement O on distribution function
f (O, Õ, t) expressed in variables O and Õ leads to diffusion of f (O, Õ, t) only on variable
Õ . The value of distribution function for f (O, Õ, t) in arbitrary time is given by well-known
expression:

f (O, Õ, t) = 1

(2πt)1/2

∫
dÕ1f (O, Õ1, t = 0) exp

(
− (Õ − Õ1)

2

4t

)
. (2.8)

It follows from the expression (2.8) that

f∞ ≡ lim
t→∞ f (O, Õ, t)

is the function depending only on O . Therefore f∞(O) may be regarded as distribution
function for values of observable O received as a result of continuous measurement of O .
In macroscopical system such interpretation completely consistent with quantum theory (see
Ref. [1]) in which measurement of O results in exponential decay of non-diagonal on Ô ma-
trix elements of ρ̂(t). It should be noted that in spite of it’s plausibility the derivation of (2.4)
and (2.5) outlined above may be considered only as heuristic. So, the following concrete ex-
amples showing the influence of continuous measurements on behavior of macroscopical
systems help one to make more clear physical meaning of approach proposed.

3 Stationary States in the Linear Dissipative Systems Induced by Continuous
Measurements

As the first example we consider the evolution of linear open system L under the noise
induced by continuous measurement in it. For simplicity we suppose that system L has only
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one degree of freedom, and coordinates x1 and x2 describing its state are dimensionless. The
equations of motion for variables x1 and x2 of such system can be written as:

dxi

dt
= Aikxk. (3.1)

We assume that elements of matrix

Â ≡
(

a b

c d

)

does not depend on x1, x2 and t , and satisfy two additional restrictions:

(1) TrA ≡ tÂ ≡ a + d < 0,
(2) detA ≡ dÂ ≡ ad − bc > 0.

These restrictions provide exponentional decay of solutions of (3.1) when t → ∞. As
established above the evolution of distribution function f (x1, x2, t) of L when both drift
(3.1) and continuous measurement are took into account can be described by the Fokker-
Planck equation:

df

dt
= − ∂

∂xi

(Aikxkf ) + Dik

∂2f

∂xi∂xk

. (3.2)

We note that for linear system the tensor of diffusion

D̂ ≡
(

D1 D

D D2

)

corresponding to the measurement of linear x1 and x2 variables in L by virtue of (2.5)
satisfies to the condition:

dD̂ = D1D2 − D2 = 0. (3.3)

Now we want to study the stationary states of L induced in it by process of such measure-
ment. The method used for this purpose as a matter of fact is the same which used in the
statistical physics under considering the fluctuations of physical quantities near equilibrium
state (see e.g. Ref. [6]). We are looking for stationary solutions of the Fokker-Planck equa-
tion in a standard form (3.2): f (x1, x2) ∼ exp(S), where S(x1, x2) = −βikxixk/2 is negative
definite quadratic form of x1 and x2 which plays a role of entropy for stationary state. Sub-
stituting this expression for f (x1, x2) into (3.2), and, equating the coefficients at identical
powers of variables x1 and x2, we obtain two equations for unknown symmetric matrix
β̂ ≡ βik :

TrÂ = −TrD̂β̂, (3.4)

− (β̂Â + Ât β̂)

2
= β̂D̂β̂, (3.5)

where Ât is a matrix transposed to Â . It is easy to see that (3.4) and (3.5) are equivalent to
the single equation for a matrix β̂−1, reciprocal to β̂:

Âβ̂−1 + β̂−1Ât = −2D̂. (3.6)
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Note, that the matrix equation (3.6) allows one to obtain solution for β−1 in general case
when matrix Â has arbitrary dimension N × N [7]. However, here we are interested in only
the situation when N = 2. In this case the expression for β̂−1 satisfying to the (3.6) can be
presented as:

β̂−1 = − (t2
Â

+ dÂ)

(tÂdÂ)
D̂ + 1

dÂ

(ÂD̂ + D̂Ât ) − 1

tÂdÂ

ÂD̂Ât . (3.7)

(We remind that tÂ ≡ TrÂ and d̂Â ≡ det Â.) It is well known from the fluctuation theory (see
Ref. [6]), that elements of a matrix β̂−1 coincide with the second moments of variables x1

and x2 in a stationary state. Therefore using (3.7) one can write down explicit expressions
for these moments with the help of known elements of matrixes Â and D̂:

x2
1 = β̂−1

11 = (bc − ad − d2)D1 + 2bdD − b2D2

(a + d)(ad − bc)
, (3.8)

x1x2 = β̂−1
12 = cdD1 − 2adD + abD2

(a + d)(ad − bc)
, (3.9)

x2
2 = β̂−1

22 = −c2D1 + 2acD + (bc − a2 − ad)D2

(a + d)(ad − bc)
. (3.10)

Now having in hands expression for β̂−1
ik and hence for the entropy S(x1, x2) we can to

construct “thermodynamics” of measurement process for linear open systems. By analogy
to usual linear thermodynamics we define “forces” Xi as:

Xi = ∂S

∂xi

= −βikxk. (3.11)

Coordinates x1 and x2 describing system state are expressed by forces Xi as:

xi = −β−1
ik Xk. (3.12)

It is convenient to introduce the kinetic matrix L̂ = −Âβ̂−1 and by means of it to write
down the equations of motion for L (3.1) in the standard form as the connection between
“flows” ji ≡ dxi/dt and “forces” Xi :

ji = Aikxk = −(Âβ̂−1)ikXk = LikXk. (3.13)

Comparing expression for L̂ with (3.6), we obtain the relation:

L̂ + L̂† = 2D̂. (3.14)

It is known that in linear nonequilibrium thermodynamics the kinetic matrix L̂ is sym-
metric (if magnetic field is absent), i.e. L̂ = L̂t . This fundamental result for the first time
obtained by Onsager [8] follows from the symmetry of equations of motion with respect to
time inversion. In the case of arbitrary open linear system L the equations of motion (3.1)
obviously do not possess such symmetry. It is interesting to note that under definite restric-
tions on a measured quantity kinetic matrix L̂ turns out to be symmetric. Let us find these
conditions in explicit form. For this purpose we substitute expression for β−1 from (3.7)
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into definition of kinetic matrix L̂ = −Âβ̂−1 and after simple algebra obtain the following
relation:

L̂ = D̂ + 1

tÂ
(ÂD̂ − D̂Ât ). (3.15)

From (3.15) follows that the matrix L̂ becomes symmetric under condition: ÂD̂ = D̂Ât

or when elements of matrixes Â and D̂ are connected as:

bD2 − cD1 + (a − d)D = 0. (3.16)

Recalling now the general restriction (3.3) on the elements D̂ which corresponds to the
measurement process we come as a result to the following conclusion. For arbitrary open
linear system an observable does exist, whose continuous measurement induces the station-
ary state of a system with symmetric matrix L̂. It is worth to note that the same measurement
results in the maximal correlation between coordinates. Let us prove this statement. We in-
troduce the coefficient of correlation ηc between x1 and x2 by means of standard definition:

ηc = x1x2

(x2
1 x2

2 )
1/2

. (3.17)

It is implied in (3.17) that x1 = x2 = 0. Using the known expressions for second moments
(3.8)–(3.10) one can easily obtain the relation:

1

η2
c

= x2
1 x2

2

(x1x2)2
= 1 + (ad − bc)

[bD2 − cD1 + (a − d)D]2

(cdD1 − 2adD + abD2)
2 . (3.18)

Comparing (3.18) with condition (3.16) we come to the claimed result: symmetry of
kinetic matrix L̂ leads to equality |ηc| = 1, i.e. to the maximal correlation between variables
x1 and x2 and vice versa. The sense of the result obtained above becomes evident if we
pass to variables O and Õ (O—the measured quantity and {O,Õ} = 1). In these variables,
directly connected with measurement, diffusion tensor has the simple form:

D̂ =
(

0 0
0 1

)

and condition of symmetry for matrix L̂ looks as b = 0. The equations of motion in variables
O and Õ are written down as:

dO

dt
= aO,

dÕ

dt
= cO + dÕ, (3.19)

The corresponding Fokker-Planck equation for distribution function f (O, Õ) of station-
ary state may be written as:

∂

∂O
(aOf ) + ∂

∂Õ
[(cO + dÕ)f ] = ∂2f

∂Õ
. (3.20)

As one can easily see (3.20) has normalized solution of the form:

f (O, Õ) =
√ |d|

2π
δ(O) exp

(
−|d|Õ2

2

)
. (3.21)



Int J Theor Phys (2009) 48: 392–402 399

Thus, under the condition ÂD̂ = D̂Ât , f (O, Õ) turns out to be proportional to delta-
function of measured quantity. It means the “freezing” of the observed quantity. Such case
automatically results in the maximal correlation between coordinates of L and to the sym-
metry of kinetic matrix L̂ . One can say that under condition (3.16) we have some analog of
quantum Zeno effect (see Ref. [9]) for classical system.

Now let us discuss briefly the possibility of experimental observation the effects con-
nected with influence of measurement on behaviour of macro- or mesoscopical systems.
Two main obstacles can hinder such observation: (1) the smallness of the measurement noise
proportional, as we saw, to γ �

2 and (2) the unavoidable presence at experiment of extrane-
ous noise of different nature (thermal, shot and so on), which can suppress effects connected
with measurement. The first obstacle is essential mainly for linear systems. Really, it is
well-known, that in nonlinear systems not far from bifurcation point even weak external
noise can result in qualitative modification of the system behaviour (see e.g. Ref. [10]). The
simple example of such bifurcation under influence of measuring noise is considered in [11].

Here we want to make the next remark. In the number of cases the coupling constant
of the meter with the measured system—γ is proportional to 1/�

2. In such situations the
Fokker-Planck equation following from the Lindblad equation in the limit � → 0 possesses
the explicit statistical interpretation. For example, in the model of quantum diffusion con-
sidered in [12] (further we use the simplified version of [12] outlined in [1]) the measuring
procedure of the position r of the particle moving through the crystal and interacting with
its atoms is described by the equation for density matrix of the particle ρ̂:

dρ̂

dt
= − i

�
[Ĥ , ρ̂] − γ

2
[r̂ , [r̂ , p̂]], (3.22)

where coupling constant γ = 2ηkBT /�
2 (kB is the Boltzmann constant) depends on the

temperature of the crystal T and friction coefficient η. According to the Sect. 2 in the limit
� → 0 (3.22) transforms to the following equation for distribution function of the particle in
the momentum space:

df

dt
= {H,f } + D

∂2f

∂p2
. (3.23)

So in this case the diffusion coefficient of the particle in the momentum space—D is
connected with the temperature of the medium by usual Einstein relation: D = ηkBT .

As for the second case, i.e. presence of some extraneous noise in the system, really it
may be more serious obstacle for experimenter. We postpone the detailed analysis of this
problem for future publications and note only that specific character of measuring noise and
its selective action on various physical quantities allows one to have a chance to select it
from irrelevant noise of other nature.

4 Thermolization between Noninteracting Parts Caused by the Measurement
in the Composite System

In this section we consider the interesting problem connected with influence of continuous
measurement in composite system on behavior of its parts. To point out the basic physical
idea and conclusions following from it without complicating our account by unnecessary de-
tails we restrict our consideration by simplest example. Let us study the system C consisting
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of two identical noninteracting harmonic oscillators with Hamiltonian:

H = H1 + H2 = p2
1

2m
+ kx2

1

2
+ p2

2

2m
+ kx2

2

2
. (4.1)

The projection of angular momentum Mz = x1p2 − x2p1 is integral of motion because
{Mz,H } = 0. Let us assume that continuous measurement of integral of motion Mz occurs
in this system. We are interested in how such measurement will affect behavior of oscillators
1 and 2. According to the approach proposed in the Sect. 2 the evolution of distribution
function of composite system may be described by the Fokker-Planck equation:

∂f

∂t
= − ∂

∂x1

(
∂H

∂p1
f

)
− ∂

∂x2

(
∂H

∂p2
f

)

+ ∂

∂p1

(
∂H

∂x1
f

)
+ ∂

∂p2

(
∂H

∂x2
f

)
+ κ{Mz, {Mz,f }}, (4.2)

where f (�1,�2, t) ≡ f (x1,p1;x2,p2; t) is the distribution function of composite system C

and κ = γ �
2/2 is the coupling constant of the meter with measured system C.

With the help of (4.2) and using integration by parts one can obtain the dependence of
mean value Ā(t) for any physical quantity A(�1,�2, t) depending on time:

Ā(t) =
∫

d�1d�2A(�1,�2, t)f (�1,�2, t).

This dependence is given by the expression:

dA

dt
= {A,H } + κ

(
p2

∂

∂p1
− p1

∂

∂p2
+ x2

∂

∂x1
− x1

∂

∂x2

)2

A. (4.3)

Using equality (4.3) one can write down the equations of motion for all second moments,
i.e. for values xixk , pipk and xipk (i = 1,2) and for their linear combinations. Let us write
for example the equation of motion for mean value of energy

E1 = p2
1

2m
+ kx2

1

2

of oscillator 1. Using equality (4.3) we obtain:

dE1

dt
= 2κ(E2 − E1). (4.4)

The similar equation of motion is also correct for oscillator 2:

dE2

dt
= 2κ(E1 − E2). (4.5)

From (4.4) and (4.5) the expected result follows: energy of the composite system:
2E = E1 +E2 under the measurement of Mz is conserved. Moreover one can see that equal-
ization of subsystems energies (thermalization) takes place. We want to point out that this
equalization is connected only with measurement of Mz because dynamical interaction be-
tween oscillators 1 and 2 is strictly equal to zero.
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Now let us write the equations of motion for the moments x1p2 and x2p1. Using (4.3) we
find:

dx1p2

dt
= p1p2

m
− kx1x2 − 2κ(x1p2 + x2p1), (4.6)

dx2p1

dt
= p1p2

m
− kx1x2 − 2κ(x1p2 + x2p1). (4.7)

It follows from (4.6) and (4.7) that mean value of Mz: Mz ≡ x1p2 − x2p1 ≡ M does not
depend on time and together with total energy may be used for the characteristic of station-
ary state of the system during measurement Mz. The equations of motion for other second
moments can be similarly obtained and the values of these moments may be determined in
stationary state. Omitting trivial calculations, we present only the final results:

p2
1

2m
= p2

2

2m
= kx2

1

2
= kx2

2

2
= E

2
, (4.8)

x1p2 = M

2
; x2p1 = −M

2
; (4.9)

x1x2 = p1p2 = x1p1 = x2p2 = 0. (4.10)

The knowledge of all second moments allows one to write down distribution function
fC(�1,�2) for the stationary state of composite system C in the form of Gaussian dis-
tribution, in such a way that moments xixk , xixk and xipk , determined by it coincide with
known (4.8), (4.9), (4.10). Let us represent fC(�1,�2) in a standard form f ∼ exp(S), where
S(�1,�2) = −βαβyαyβ /2—entropy of a stationary state of system C. We use following or-
dering of variables yα (α = 1,2,3,4): y1 = x1, y2 = p1, y3 = x2, y4 = p2. The matrix β̂−1

reciprocal to matrix β whose elements coincide with known moments can be represented
as:

β̂−1 =

⎛

⎜⎜⎝

E/k 0 0 M/2
0 mE −M/2 0
0 −M/2 E/k 0

M/2 0 0 mE

⎞

⎟⎟⎠ . (4.11)

In accordance with (4.11) matrix β is equal to:

β̂ =

⎛

⎜⎜⎝

mE 0 0 −M/2
0 E/k M/2 0
0 M/2 mE 0

−M/2 0 0 E/k

⎞

⎟⎟⎠

(
mE2

k
− M2

4

)−1

. (4.12)

Now with the help (4.12) one can write down the distribution function of composite
system fC(�1,�2) in desired form:

fC ∼ exp(−βeff (H − Mz)), (4.13)

where notations:

βeff ≡ E

ω2
0

(
mE2

k
− M2

4

)−1

,  ≡ Mω2
0

2E
, ω0 =

√
k

m

are used.
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Representation (4.13) for distribution function fC(�1,�2) is the basic result of this sec-
tion. The small comments are necessary to it. First of all we note that value of quantity
mE2/k − M2/4 is more then zero, that is why parameter βeff > 0. This statement follows

from inequality (x2
1 )(p

2
2) ≥ (x1p2)

2 and taking into account that kx2
1/2 = p2

2/2m = E/2,
and x1p2 = M/2. The second remark is more essential. As one can see directly from (4.13)
distribution function fC(�1,�2) of composite system may be written down in the form of
Gibbs distribution with effective Hamiltonian Heff = H − Mz. The effective temperature
of such distribution

kBTeff = E − M2ω2
0

4E

is determined by the total energy of the system and by mean value of the measured integral
of motion.

It is worth to remind that both effects: equalization of subsystems energies and relaxation
to the quasi-equilibrium Gibbs distribution occur in the system of noninteracting oscillators
only due to process of measurement. The observation of such effects in macro- or mesoscop-
ical systems would be the crucial argument in behalf of approach proposed in the present
paper.

5 Conclusions

In conclusion it is worth to point out the main result of the present paper. It lies in the es-
tablishment of the explicit form of connection between decoherence caused by continuous
measurement in quantum Markov system and characteristic noise produced by correspond-
ing measurement in a classical analog of such system. Besides continuous measurements
at linear dissipative systems are considered in detail. Also the qualitative effects connecting
with the probable influence of measuring process on the behavior of macroscopical systems
were investigated. The experimental testing of effects predicted in the paper would undoubt-
edly cause our better understanding of the correspondence existing between classical and
quantum phenomena.
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